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Fig. 1  25° included angle cone in normal flight (5500 fps,
25 am Hg air pressure)

Fig. 2 25° included angle cone followed by a piece of sabot
(5500 fps, 25 mm Ilig air pressure)

schlieren photography, and assurance of constant attitude
have been described elsewhere.! Note that the character-
istics of the flow are as expected. There are bow and second-
ary shocks, and the laminar trail is much narrower than the
base of the cone. There is a distinct necking of the flow,
causing the secondary shock, and, further downstream, there
is a distinet laminar-to-turbulent transition. Hundreds of
pictures like this have been taken under various flight condi-
tions.

Figure 2 shows an identical cone fired under precisely the
same conditions, but with the base of the sabot located in
the wake of the cone and some distance behind it. Note
that the flow behind the cone is completely different in this
case. There is no secondary shock. There is no necking of
the flow. The trail is still laminar but of approximately the
diameter of the base. No hint of laminar to turbulent
transition exists ahead of the sabot. Examination of the
film density of the schlieren photograph indicates that, as in
Fig. 1, the laminar trail is a region of much lower gas density
than the surrounding inviscid region (an expected tempera-
ture and pressure phenomenon in the case of the normal flow
this close to the body). Obviously, the cone and sabot have
interacted via the wake of the cone. This is nof an isolated
phenomenon; the results are completely reproducible.

The first and obvious lesson from these two photographs is
that considerable care must be taken by researchers in bal-
listic ranges to insure that sabots separate properly and that
the field of view of their optics is sufficiently wide so that
the possibility of the interaction between two or more pro-
jectiles is eliminated. Otherwise, the flow characteristics
photographed are not necessarily those of the body under
study.

1 Slattery, R. E. and Clay, W. G., “The turbulent wake of
hypersonic bodies,”” ARS Preprint 2673-62 (1962).
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Figure 2 is interesting in and for itself. The sabot, travel-
ing in the wake of the cone, has made its presence felt up-
stream and has changed the otherwise normal flow about the
cone. The simplest interpretation is that the sabot is im-
mersed in a fluid with respect to which it has a subsonic
velocity, despite its high velocity in the laboratory system.
Under these conditions it can propagate energy back up the
cone’s trail, countercurrent to the flow in the trail (in the
body-centered system), and alter the characteristic flow about
the cone. This comes about, probably, for two reasons: 1)
the flow in the wake of the cone is quite high speed in the
observer system and is an appreciable fraction of the velocity
of the sabot; and 2) the flow is hot, which tends to raise the
sound speed.

Of course, having stated that energy is propagated up the
trail by no means describes the details of the processes that
alter the normal flow.

Invariant Components of Motion in
Inverse-Square Force Fields
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RONIN and Schwartz! have drawn attention to a useful,

but little known, property of motion in a two-body
motion in an inverse-square force field, namely, that the
velocity vector can be resolved at any point into two com-
ponents of constant magnitude, one remaining normal to the
initial line and the other remaining normal to the radius
vector. This property of the motion also has been proved
in the well-known text on dynamics by Whittaker.2 The
present note is a brief outline of work?® published in 1959
which used the same invariant properties and applied the
method to the problem of small drag and low thrust.

Kepler’s second law states that the radius vector sweeps
out equal areas in equal times; the quantity r2(dd/df) =
h is a constant of the motion and is, of course, a first integral
of the equations of motion. Here ¢ is the true anomaly and
his a constant.

The existence of an invariant such as »2(dd/dt) immediately
suggests the problem of finding additional invariants, and
this search is successful if the invariant components just
noted are used. If »; denotes the component normal to the
initial line and v, denotes the component normal to the radius
vector (V, and V;, respectively, in Fig. 2 of Ref. 1), then it
also is of interest to note that »;/v. is the eccentricity of the
orbit. The square of the speed then is given by

v = 1?4 1% + 20w cos(P)

If, further, o is the semimajor axis of the elliptical orbit, e
the eccentricity of the orbit, and R the radius of the earth,
the three invariants of the motion can be written as

x = p(dd/dt) — (dp/dt) cot(d) = (B/L)\?
y = (dp/dt)/ sin(®) = e(R/L)\1? M
z = p¥dd/dt) = (L/R)V?

In Egs. (1), p = r/R and L = a(1 — ¢%; for convenience,
the area integral is denoted by 2, and v, and v, now are denoted
by y and =z, respectively. The quantities  and z are de-
pendent in the classical case; in the following, a,y, and 2
will be used as new dependent variables, with & as the new
independent wvariable. The original dependent variables
were 7 and ¢ as functions of the time ¢.
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In the motion of a satellite near the earth, an important
force, in addition to the gravitational force, is that due to
atmospheric drag. If it is assumed that the drag force is
tangential to the path and proportional to the density and to
the square of the speed, then the basic equations in the
original variables can be written as

dr/diz — r(dd/db)? + K/r* =
(—CoA/2m)p(dr/dt) [(dr/dE)* + r*(dd/dt)*]2

(1/7r)(d/de) (r*dd/dt) =
(—CpA/2m) pr(dd/dt) [(dr/dE)? + r2(dd/di)]v?

where p is the density, m the mass of the satellite, A the
normal cross-sectional area, and Cp the drag coefficient as-
sumed as constant.

If the satellite is sufficiently high, then the drag terms may
be dropped, and the analysis leads to the usual Kepler re-
sults; if the satellite is near the re-entry condition, then the
drag forces will dominate the gravitational forces, and sim-
plifying assumptions can be made.* However, in the studies
of the lifetime of a satellite, or in orbital studies where it is
assumed that the satellite is several revolutions away from
the re-entry condition, the accurate inclusion of the drag
terms becomes necessary.

Roberson® analyzed Egs. (2) by a formal perturbation
procedure after the introduction of new variables. Since
the quantity z in Eq. (1) is constant in the drag-free-case,
it is to be expected that this quantity would vary slowly as a
function of the time in the presence of drag forces. Roberson
used R/r and KR/(r*dd/dt)? as new variables and was able
to reduce the original equations to a second-order equation
that was linear and a first-order equation. However, Rober-
son used only one dynamical invariant in the analysis. It
has been noted that there are two components of velocity
which are invariant in the two-body motion. Without any
essential restriction in generality, the dynamical equations
can be written for the case of constant tangéntial thrust; the
modifications in the case of drag are clear.

It is of interest to change to dimensionless variables; the
dimensionless time 7 = (R/g)'%, where g is the acceleration
due to gravity at the surface of a spherical earth, and the
dimensionless velocity is V, where » = (gR)Y¥2V. The non-
dimensional measure of the thrust may be denoted by wu.
The dynamical equations in (2) may be written as

d*p/dr* — p(dd/dr)* + (1/p*) = w(dp/dr)/V

p(d*¥/dr?) + 2(dp/dr)(dd/dr) = up(dd/dr)/V

If the definitions used in Eqgs. (1) are used in Eqgs. (3), one
may write

®3)

p = &/(x + y cose)
dp/dr = y sind “)
d¥/dr = (x + y cos$)2/z

The first relation in Eqgs. (4) shows that, for constant (x,y,2),
p is in the correct polar form for the equation of the undis-
turbed orbit. In the Kepler case these constants are known,
and the orbit is fixed. In the case of small thrust or drag,
(z,9,2) should be slowly varying functions of ¢ and therefore
of the time ¢£. There are several advantages to be gained
from working with the orbital equations in the form of Egs.
(4); the first equation, for example, gives the instantaneous
ellipse at any instant of time if (z,5,2) are known at that
time. Also (y/z) is the instantaneous eccentricity of the
orbit. The functions (z,y,2) can be determined successively
from the solution of first-order equations; in each case the
starting approximations are known constants.

To indicate the work briefly, the first and second equations
of (4) must be related; if primes denote differentiations
with respect to the angle ¢, this relation can be written as

2’z + y'z cos(@) — 2'(x + y cosd) = 0 (5)
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The second relation is determined conveniently by dividing
the left and right sides, respectively, of Egs. (3). This
equation ultimately? can be written as

y'(—zsind) + 2/ (—y sind) = 1 — 22 (6)

Equation (5), of course, does not depend upon dynamical
considerations; in the Kepler case z = 1, and the right side
of Eq. (6) vanishes for the starting approximation. This
equation does not depend upon the force law, but the force is -
required to remain tangential to the orbit. This equation
does not involve the density, magnitude of the velocity, or
any thrust parameter. The third and final equation does
involve the thrust parameter:

2’ = w2?/V)/(x + y cosd)? (7)

The three first-order equations in (z,y,2) as functions of & are
Eqs. (6-7).

It now is assumed that the solutions may be written in the
form of the perturbation series solution:

(@) x + pr(d) + pind) + ...
y@)  yo + pn(@) + pi(® + . .. )]
2 20+ pz(®) + uz(®) + ...

and it is known that, if u = 0, z,y, and z are constants [Eqs.
(1)]. The terms with subscripts unity then can be written
down in terms of integrals of known functions.
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Commentis

Errata

Morris MorpucHOW?
Polytechnic Institute of Brooklyn, Brooklyn, N. Y.

AND
StanLEY P. REYLET
Rutgers University, New Brunswick, N. J.

HE authors would like to call attention to the following

misprints that appeared in the paper “On Calculations
of the Laminar Separation Point, and Results for Certain
Flows,” by Morris Morduchow and Stanley P. Reyle, in the
Readers’ Forum of the Journal of the Aerospace Sciences,
August 1962, p. 996.

In Eq. (2), the exponent should read “1/(6.13n-1).” In
Eq. (3), the exponent should read “1/(6.13n + 1).”” In the
fourth line after Eq. (3), the beginning of the sentence should
read “For u3/Ue =1 — £(n>0)....7
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